Abstract
The Escherichia coli DNA-binding protein, OmpR, is one of the best characterized of the bacterial positive regulators that enhance the transcriptional ability of RNA polymerase. OmpR, consisting of 239 amino acids, binds to specific sequences located upstream of the cognate ompC and ompF promoters. The C-terminal half of OmpR, consisting of about 120 amino acids, exhibits an inherent DNA-binding ability. To address the issue of DNA binding by OmpR, we selected a set of OmpR mutants, each of which has a single amino acid substitution in the C-terminal half of OmpR. In particular, we characterized a number of OmpR mutants which are defective in DNA binding and thereby result in an OmpF- OmpC phenotype. Among them, a putative positive control OmpR mutant was also obtained, which appears to be defective in phosphorylation-dependent transcriptional activation, but not in DNA binding. These results are discussed with general emphasis on DNA recognition by the E. coli family of OmpR-like regulatory proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.