Abstract
The cytochrome P450 isoforms responsible for the regio-selective metabolism of benz[ a]anthracene (BA) are poorly defined but as with other polycyclic aromatic hydrocarbons (PAHs) may include members of the CYP2C sub-family. Since the expression of some of these is regulated in a gender-specific manner and may be altered by age, rat strain or by phenobarbital treatment, the effects of these variables on metabolism of BA to diols was investigated. These studies used hepatic, microsomal membranes from immature and adult Long–Evans rats and adult Hooded Lister rats. BA-diols were resolved by normal phase HPLC into three discrete peaks identified as benz[ a]anthracene-5,6-diol (BA-5,6-diol), benz[ a]anthracene-10,11-diol (BA-10,11-diol) and a mixture of benz[ a]anthracene-3,4- and -8,9-diols (BA-3,4-diol and BA-8,9-diol and termed Peak(3/8)). Significant gender-related differences were found in the rates of diol formation in adults of both the Long–Evans and Hooded Lister rat strains. Formation of BA-10,11-diol and to a lesser extent the components of Peak(3/8) were greater in the male compared to female animals by factors of at least 14 and two, respectively. An age-dependent effect is also observed in the Long–Evans rat since these differences are still apparent in prepubertal animals but to a lesser extent (gender ratio male:female BA-10,11-diol 9X; Peak(3/8) 1.4X). In contrast BA-5,6-diol was formed at similar rates by membranes from female and male rats whether mature (Long–Evans and Hooded Lister) or immature (Long–Evans). Phenobarbital treatment of the adult Long–Evans rats resulted in a moderate increase in the formation of each diol other than at the 10,11-position and the induction was not gender specific. The rate of formation of BA-10,11-diol was decreased in phenobarbital-treated male rats suggesting modulation of a male specific isoform. Measurement of microsomal epoxide hydrolase revealed no gender or age differences and suggests that this enzyme is not rate limiting in BA-diol formation and thus is not responsible for the differences in BA-diol formation observed. The results suggest that CYP2C11 along with a male-specific isoenzyme not regulated by age are important in the formation of BA-10,11-diol and a component(s) of Peak(3/8) in males. CYPs 2B2 and/or 2C6 appear to be involved in formation of BA-5,6-diol in male and female. Identification of the CYPs involved in the regio-selective metabolism of BA may lead to an explanation of the lower carcinogenic potency of this PAH compared to dimethylbenz[ a]anthracene and this study provides novel clues concerning the identities of the CYPs, which are important.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.