Abstract

To elucidate gender-dependent protein regulation and molecular abnormalities in streptozotocin (STZ)-induced diabetes, we compared differentially expressed pancreatic proteins between male and female diabetic rats and their healthy controls using a 2-DE-based proteomic approach. In animal experiments, we found that females exposed to STZ displayed greater susceptibility towards diabetes development due to lower insulin secretion and severe β-cell damage. It was also accompanied with more impaired regulation of sex hormones, lower glucose tolerance, and higher blood glucose levels compared to male diabetic rats. Among 748 detected protein spots ranging in mass from 6 to 240 kDa between pH 3 and 10, a total of 42 proteins showed significant sexually-dimorphic regulation patterns between male and female diabetic rats. Proteomic data revealed that male and female rats displayed prominent gender-dimorphic differential regulation of pancreatic proteins involved in glycolysis, the citric acid cycle, amino acid synthesis, lipid metabolism, insulin biosynthesis, β-cell regeneration, cell signaling, as well as antioxidative and cellular stress defense. In conclusion, the current proteomic study revealed that severely impaired protein regulation in the pancreas, at least in part, is responsible for increased susceptibility of female rats to STZ-induced diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call