Abstract

AbstractGender-dependent (male/female) acoustic models are more acoustically homogeneous and therefore give better recognition performance than single gender-independent model. This paper deals with a problem how to use these gender-based acoustic models in a real-time LVCSR (Large Vocabulary Continuous Speech Recognition) system that is for more than one year used by the Czech TV for automatic subtitling of Parliament meetings that are broadcasted on the channel ČT24. Frequent changes of speakers and the direct connection of the LVCSR system to the TV audio stream require switching/fusion of models automatically and as soon as possible. The paper presents various techniques based on using the output probabilities for quick selection of a better model or their combinations. The best proposed method achieved over 11% relative WER reduction in comparision with the GI model.KeywordsFusion MethodTotal ProbabilityAcoustic ModelOutput ProbabilityWord Error RateThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.