Abstract

BackgroundLimited data exists regarding gender-specific microbial alterations during gender-affirming hormonal therapy (GAHT) in transgender individuals. This study aimed to investigate the nuanced impact of sex steroids on gut microbiota taxonomy and function, addressing this gap. We prospectively analyzed gut metagenome changes associated with 12 weeks of GAHT in trans women and trans men, examining both taxonomic and functional shifts.MethodsThirty-six transgender individuals (17 trans women, 19 trans men) provided pre- and post-GAHT stool samples. Shotgun metagenomic sequencing was used to assess the changes in gut microbiota structure and potential function following GAHT.ResultsWhile alpha and beta diversity remained unchanged during transition, specific species, including Parabacteroides goldsteinii and Escherichia coli, exhibited significant abundance shifts aligned with affirmed gender. Overall functional metagenome analysis showed a statistically significant effect of gender and transition (R2 = 4.1%, P = 0.0115), emphasizing transitions aligned with affirmed gender, particularly in fatty acid-related metabolism.ConclusionsThis study provides compelling evidence of distinct taxonomic and functional profiles in the gut microbiota between trans men and women. GAHT induces androgenization in trans men and feminization in trans women, potentially impacting physiological and health-related outcomes.Trial registrationClinicaltrials.gov NCT02185274.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.