Abstract
Acute kidney injury (AKI) is a serious health concern with high morbidity and high mortality worldwide. Recently, sexual dimorphism has become increasingly recognized as a factor influencing the severity of the disease. This study explores the gender-specific renoprotective pathways in αMUPA transgenic mice subjected to AKI. αMUPA transgenic male and female mice were subjected to ischemia-reperfusion (I/R)-AKI in the presence or absence of orchiectomy, oophorectomy, and L-NAME administration. Blood samples and kidneys were harvested 48 h following AKI for the biomarkers of kidney function, renal injury, inflammatory response and intracellular pathway sensing of or responding to AKI. Our findings show differing responses to AKI, where female αMUPA mice were remarkably protected against AKI as compared with males, as was evident by the lower SCr and BUN, normal renal histologically and attenuated expression of NGAL and KIM-1. Moreover, αMUPA females did not show a significant change in the renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Interestingly, oophorectomized females eliminated the observed resistance to renal injury, highlighting the central protective role of estrogen. Correspondingly, orchiectomy in αMUPA males mitigated their sensitivity to renal damage, thereby emphasizing the devastating effects of testosterone. Additionally, treatment with L-NAME proved to have significant deleterious impacts on the renal protective mediators, thereby underscoring the involvement of eNOS. In conclusion, gender-specific differences in the response to AKI in αMUPA mice include multifaceted and keen interactions between the sex hormones and key biochemical mediators (such as estrogen, testosterone and eNOS). These novel findings shed light on the renoprotective pathways and mechanisms, which may pave the way for development of therapeutic interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.