Abstract

Human infertility in relation to mutations affecting the cystic fibrosis transmembrane regulator (CFTR) gene has been investigated by different authors. The role of additional variants, such as the possible forms of the thymidine allele (5T, 7T and 9T) of the acceptor splice site of intron 8, has in some instances been considered. However, a large-scale analysis of the CFTR gene and number of thymidine residues, alone and in combination, in the two sexes had not yet been addressed. This was the aim of this study. Two groups were compared, a control group of 20,532 subjects being screened for perspective reproduction, and the patient group represented by 1854 idiopathically infertile cases. Analyses involved PCR-based CFTR mutations assessment, reverse dot-blot IVS8-T polymorphism analyses, denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. The expected 5T increase in infertile men was predominantly owing to the 5/9 genotypic class. The intrinsic rate of 5T fluctuated only slightly among groups, but some gender-related differences arose when comparing their association. Infertile men showed a significantly enriched 5T + CFTR mutation co-presence, distributed in the 5/9 and 5/7 classes. In contrast, females, from both the control and the infertile groups, showed a trend towards a pronounced reduction of such association. The statistical significance of the difference between expected and observed double occurrence of 5T + CFTR traits in women suggests, in line with other reports in the literature, a possible survival-hampering effect. Moreover, regardless of the 5T status, CFTR mutations appear not to be involved in female infertility. These results underline the importance of (i) assessing large sample populations and (ii) considering separately the two genders, whose genotypically opposite correlations with these phenomena may otherwise tend to mask each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.