Abstract

With the growing use of large language models (LLMs) in education and health care settings, it is important to ensure that the information they generate is diverse and equitable, to avoid reinforcing or creating stereotypes that may influence the aspirations of upcoming generations. To evaluate the gender representation of LLM-generated stories involving medical doctors, surgeons, and nurses and to investigate the association of varying personality and professional seniority descriptors with the gender proportions for these professions. This is a cross-sectional simulation study of publicly accessible LLMs, accessed from December 2023 to January 2024. GPT-3.5-turbo and GPT-4 (OpenAI), Gemini-pro (Google), and Llama-2-70B-chat (Meta) were prompted to generate 500 stories featuring medical doctors, surgeons, and nurses for a total 6000 stories. A further 43 200 prompts were submitted to the LLMs containing varying descriptors of personality (agreeableness, neuroticism, extraversion, conscientiousness, and openness) and professional seniority. The primary outcome was the gender proportion (she/her vs he/him) within stories generated by LLMs about medical doctors, surgeons, and nurses, through analyzing the pronouns contained within the stories using χ2 analyses. The pronoun proportions for each health care profession were compared with US Census data by descriptive statistics and χ2 tests. In the initial 6000 prompts submitted to the LLMs, 98% of nurses were referred to by she/her pronouns. The representation of she/her for medical doctors ranged from 50% to 84%, and that for surgeons ranged from 36% to 80%. In the 43 200 additional prompts containing personality and seniority descriptors, stories of medical doctors and surgeons with higher agreeableness, openness, and conscientiousness, as well as lower neuroticism, resulted in higher she/her (reduced he/him) representation. For several LLMs, stories focusing on senior medical doctors and surgeons were less likely to be she/her than stories focusing on junior medical doctors and surgeons. This cross-sectional study highlights the need for LLM developers to update their tools for equitable and diverse gender representation in essential health care roles, including medical doctors, surgeons, and nurses. As LLMs become increasingly adopted throughout health care and education, continuous monitoring of these tools is needed to ensure that they reflect a diverse workforce, capable of serving society's needs effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.