Abstract

Gender-related differences in ventricular electrophysiology are known to be important determinants of human arrhythmic risk, but the underlying molecular basis is poorly understood. The present work aims to provide the first detailed analysis of gender-related cardiac ion-channel gene-distribution, based on samples from non-diseased human hearts. By using a high-throughput quantitative approach, we investigated at a genome-scale the expression of 79 genes encoding ion-channel and transporter subunits in epicardial and endocardial tissue samples from non-diseased transplant donors (10 males, 10 females). Gender-related expression differences involved key genes implicated in conduction and repolarization. Female hearts showed reduced expression for a variety of K +-channel subunits with potentially important roles in cardiac repolarization, including HERG, minK, Kir2.3, Kv1.4, KChIP2, SUR2 and Kir6.2, as well as lower expression of connexin43 and phospholamban. In addition, they demonstrated an isoform switch in Na +/K +-ATPase, expressing more of the α1 and less of the α3 subunit than male hearts, along with increased expression of calmodulin-3. Iroquois transcription factors (IRX3, IRX5) were more strongly expressed in female than male epicardium, but the transmural gradient remained. Protein-expression paralleled transcript patterns for all subunits examined: HERG, minK, Kv1.4, KChIP2, IRX5, Nav1.5 and connexin43. Our results indicate that male and female human hearts have significant differences in ion-channel subunit composition, with female hearts showing decreased expression for a number of repolarizing ion-channels. These findings are important for understanding sex-related differences in the susceptibility to ventricular arrhythmias, particularly for conditions associated with repolarization abnormalities like Brugada and Long QT syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.