Abstract

Surface electromyographic (sEMG) signal is commonly used as main input information to control robotic prosthetic systems. sEMG signals vary from person to person; gender is a factor influencing this variation. Thus, the aim of the study is to detect gender-related differences in sEMG activity of two main ankle-flexor muscles [tibialis anterior (TA) and gastrocnemius lateralis (GL)] during walking at comfortable speed and cadence. Statistical analysis of sEMG signals, performed in seven male (M-group) and seven female (F-group) adults, showed clear gender-related differences in muscle behaviour. The assessment of the different activation modalities, indeed, allowed to detect that F-group adopts a walking modality with a higher number of activations during gait cycle, compared to M-group. This suggests a female propensity for a more complex muscle recruitment, during walking. This novel information suggests considering a separate approach for males and females, in providing electromyographic signals as input information to control robotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.