Abstract

Gender recognition from facial images plays an important role in biometric applications. Employing Dyadic wavelet Transform (DyWT) and Local Binary Pattern (LBP), we propose a new feature descriptor DyWT-LBP for gender recognition. DyWT is a multi-scale image transformation technique that decomposes an image into a number of sub-bands which separate the features at different scales. DyWT is a kind of translation invariant wavelet transform that has a better potential for detection than Discrete Wavelet Transform (DWT). On the other hand, LBP is a texture descriptor and is known to be the best for representing texture micro-patterns, which play a key role in the discrimination of different objects in an image. For DyWT, we used spline dyadic wavelets (SDW). There exist many types of SDW; we investigated a number of SDWs for finding the best SDW for gender recognition. The dimension of the feature space generated by DyWT-LBP descriptor becomes excessively high. To tackle this problem, we apply a feature subset selection (FSS) technique that not only reduces the number of features significantly but also improves the recognition accuracy. Through a large number of experiments performed on FERET and Multi-PIE databases, we report for DyWT-LBP descriptor the parameter settings, which result in the best accuracy. The proposed system outperforms the stat of the art gender recognition approaches; it achieved a recognition rate of 99.25% and 99.09% on FERET and Multi-PIE databases, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.