Abstract

Aquatic plants are well known for their high degree of phenotypic plasticity in vegetative structures, particularly leaves. Less well understood is the extent to which their sexuality can be modified by environmental conditions. Here we investigate gender plasticity in the European clonal monoecious aquatic Sagittaria sagittifolia (Alismataceae) to determine how floral sex ratios may vary with plant size and inflorescence order. We sampled two populations from aquatic habitats in East Anglia, U.K. and measured a range of plant attributes including ramet size and the number of female and male flowers per inflorescence. The two populations exhibited similar patterns of phenotypic gender, despite contrasting patterns of total allocation to female and male flower number. Plants produced male-biased floral sex ratios but female flower number increased from the first to the second inflorescence whereas male flower number decreased. Size-dependent gender modification occurred in both populations, but the patterns of allocation to female flower production differed between the two populations. Our results are consistent with the view that monoecy is a sexual strategy that enables plants to adjust female and male allocation in response to changing environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.