Abstract
Background: Sex determination from the bones is of great importance for forensic medicine and anthropology. The mandible is highly valued because it is the strongest, largest and most dimorphic bone in the skull. Aim: Our aim in this study is gender estimation with morphometric measurements taken from mandibular lingula, an important structure on the mandible, by using machine learning algorithms and artificial neural networks. Methods: Cone beam computed tomography images of the mandibular lingula were obtained by retrospective scanning from the Picture Archiving Communication Systems of the Department of Oral, Dental and Maxillofacial Radiology, Faculty of Dentistry, İnönü University. Images scanned in Digital Imaging and Communications in Medicine (DICOM) format were transferred to RadiAnt DICOM Viewer (Version: 2020.2). The images were converted to 3-D format by using the 3D Volume Rendering console of the program. Eight anthropometric parameters were measured bilaterally from these 3-D images based on the mandibular lingula. Results: The results of the machine learning algorithms analyzed showed that the highest accuracy was 0.88 with Random Forest and Gaussian Naive Bayes algorithm. Accuracy rates of other parameters ranged between 0.78 and 0.88. Conclusions: As a result of the study, it is thought that mandibular lingula-centered morphometric measurements can be used for gender determination as well as bones such as the pelvis and skull as they were found to be highly accurate. This study also provides information on the anatomical position of the lingula according to gender in Turkish society. The results can be important for oral-dental surgeons, anthropologists, and forensic experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.