Abstract

The increased running participation in women and men over 40 years has contributed to scientific interest on the age-related and gender differences in running performance and biomechanics over the last decade. Gender differences in running biomechanics have been studied extensively in young runners, with inconsistent results. Understanding how gender influences the age-related differences in running mechanics could help develop population-specific training interventions or footwear to address any potential different mechanical demands. The purpose of this study was to assess gender and age effects on lower limb joint mechanics while running. Middle-aged men (57 ± 5 years) and women (57 ± 8 years) and young men (28 ± 6 years) and women (30 ± 6 years) completed five overground running trials at a set speed of 2.7 m/s while lower limb kinematics and ground reaction forces were collected. Lower limb joint kinetics were computed, normalized to body mass and compared between age and gender groups using two-factor analyses of variance. Women reported slower average running paces than men and middle-aged runners reported slower running paces than young runners. We confirmed that young runners run with more ankle, but less hip positive work and peak positive power compared to middle-aged runners (i.e., age-related distal-to-proximal shift in joint kinetics). We also present a novel finding that women run with more ankle, but less hip peak positive power compared to men suggesting an ankle dominant strategy in women at a preferred and comfortable running pace. However, the age-related distal-to-proximal shift in joint kinetics was not different between genders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call