Abstract

Sarcopenia is related to metabolic syndrome in postmenopausal women. Hormone replacement therapies with androgens improve muscle functions by molecular mechanisms that are still unknown, at least partly because the skeletal muscle transcriptome has been less characterized in females. We performed the serial analysis of gene expression method in six experimental groups, intact (male and female), ovariectomy (OVX), OVX+dihydrotestosterone (DHT) injection 1, 3, or 24 h before kill in mice. The 438 transcript species differentially expressed between gender showed that females had higher expression levels of mRNA related to cytoskeleton/contractile apparatus and mitochondrial processes as well as protein, lipid, and amino acid metabolisms. In females, OVX and DHT modulated 109 and 128 transcript species respectively. OVX repressed transcripts of fast/glycolytic fiber, glycolysis, and glucose transport, whereas all these effects were reversed 3 h after the DHT injection. Moreover, DHT treatment induced transcripts which reduce intracellular Ca(2+) level at early time points. These results may suggest that DHT treatment in OVX mice increases muscle contractility by affecting fiber distribution and intracellular Ca(2+) concentration as well as improving glucose metabolism. On the other hand, transcripts of fast/oxidative fiber, oxidative phosphorylation, and ATP production were repressed 24 h after DHT administration. In our previous study using male mice, transcripts in oxidative phosphorylation and ATP production were induced 24 h after DHT injection (Yoshioka M, Boivin A, Ye P, Labrie F & St-Amand J 2006 Effects of dihydrotestosterone on skeletal muscle transcriptome in mice measured by serial analysis of gene expression. Journal of Molecular Endocrinology 36 247-259 ). These results demonstrate gender differences in DHT actions on skeletal muscle, and contribute to a precise understanding of the molecular mechanisms of androgen actions in the female skeletal muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call