Abstract
Language model debiasing has emerged as an important field of study in the NLP community. Numerous debiasing techniques were proposed, but bias ablation remains an unaddressed issue. We demonstrate a novel framework for inspecting bias in pre-trained transformer-based language models via movement pruning. Given a model and a debiasing objective, our framework finds a subset of the model containing less bias than the original model. We implement our framework by pruning the model while fine-tuning it on the debiasing objective. Optimized are only the pruning scores - parameters coupled with the model's weights that act as gates. We experiment with pruning attention heads, an important building block of transformers: we prune square blocks, as well as establish a new way of pruning the entire heads. Lastly, we demonstrate the usage of our framework using gender bias, and based on our findings, we propose an improvement to an existing debiasing method. Additionally, we re-discover a bias-performance trade-off: the better the model performs, the more bias it contains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.