Abstract

BackgroundDNA methylation is an epigenetic mark that is influenced by underlying genetic profile, environment, and ageing. In addition to X-linked DNA methylation, sex-specific methylation patterns are widespread across autosomal chromosomes and can be present from birth or arise over time. In individuals where gender identity and sex assigned at birth are markedly incongruent, as in the case of transgender people, feminization or masculinization may be sought through gender-affirming hormone therapy (GAHT). GAHT is a cornerstone of transgender care, yet no studies to date have investigated its effect on genome-wide methylation. We profiled genome-wide DNA methylation in blood of transgender women (n = 13) and transgender men (n = 13) before and during GAHT (6 months and 12 months into feminizing or masculinizing hormone therapy).ResultsWe identified several thousand differentially methylated CpG sites (DMPs) (Δβ ≥ 0.02, unadjusted p value < 0.05) and several differentially methylated regions (DMRs) in both people undergoing feminizing and masculinizing GAHT, the vast majority of which were progressive changes over time. X chromosome and sex-specific autosomal DNA methylation patterns established in early development are largely refractory to change in association with GAHT, with only 3% affected (Δβ ≥ 0.02, unadjusted p value < 0.05). The small number of sex-specific DMPs that were affected by GAHT were those that become sex-specific during the lifetime, known as sex-and-age DMPs, including DMRs in PRR4 and VMP1 genes. The GAHT-induced changes at these sex-associated probes consistently demonstrated a shift towards the methylation signature of the GAHT-naïve opposite sex, and we observed enrichment of previously reported adolescence-associated methylation changes.ConclusionWe provide evidence for GAHT inducing a unique blood methylation signature in transgender people. This study advances our understanding of the complex interplay between sex hormones, sex chromosomes, and DNA methylation in the context of immunity. We highlight the need to broaden the field of ‘sex-specific’ immunity beyond cisgender males and cisgender females, as transgender people on GAHT exhibit a unique molecular profile.

Highlights

  • DNA methylation is an epigenetic mark that is influenced by underlying genetic profile, environment, and ageing

  • Gender‐affirming hormone therapy induces progressive changes in blood DNA methylation To investigate whether DNA methylation levels in blood change in response to gender-affirming hormone therapy (GAHT), we analysed epigenomewide methylation data in transgender women commencing feminizing hormone therapy and transgender men commencing masculinizing hormone therapy (Fig. 1A)

  • This indicates that sex-specific DNA methylation that is present throughout life, from birth to adulthood, is hardwired and determined by genetic and developmental programmes, and not susceptible to change in response to hormones

Read more

Summary

Introduction

DNA methylation is an epigenetic mark that is influenced by underlying genetic profile, environment, and ageing. In individuals where gender identity and sex assigned at birth are markedly incongruent, as in the case of transgender people, feminization or masculinization may be sought through gender-affirming hormone therapy (GAHT). We profiled genome-wide DNA methylation in blood of transgender women (n = 13) and transgender men (n = 13) before and during GAHT (6 months and 12 months into feminizing or masculinizing hormone therapy). Gender dysphoria occurs when an individual’s gender identity and sex assigned at birth do not align. In those where these are markedly and consistently incongruent, as in the case of transgender individuals, feminization or masculinization may be sought through genderaffirming hormone therapy (GAHT). GAHT includes oestrogen (in the presence of absence of progesterone) in combination with anti-androgens, while testosterone therapy is used for those seeking masculinization

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.