Abstract
We present a framework for learning new analytic BRDF models through Genetic Programming that we call genBRDF. This approach to reflectance modeling can be seen as an extension of traditional methods that rely either on a phenomenological or empirical process. Our technique augments the human effort involved in deriving mathematical expressions that accurately characterize complex high-dimensional reflectance functions through a large-scale optimization. We present a number of analysis tools and data visualization techniques that are crucial to sifting through the large result sets produced by genBRDF in order to identify fruitful expressions. Additionally, we highlight several new models found by genBRDF that have not previously appeared in the BRDF literature. These new BRDF models are compact and more accurate than current state-of-the-art alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.