Abstract

Geminiviruses infect numerous crops and cause extensive agricultural losses worldwide. During viral infection, geminiviral C4/AC4 proteins relocate from the plasma membrane to chloroplasts, where they inhibit the production of host defense signaling molecules. However, mechanisms whereby C4/AC4 proteins are transported to chloroplasts are unknown. We report here that tomato (Solanum lycopersicum) COAT PROTEIN COMPLEX I (COPI) components play a critical role in redistributing Tomato yellow leaf curl virus C4 protein to chloroplasts via an interaction between the C4 and β subunits of COPI. Coexpression of both proteins promotes the enrichment of C4 in chloroplasts that is blocked by a COPI inhibitor. Overexpressing or downregulating gene expression of COPI components promotes or inhibits the viral infection, respectively, suggesting a proviral role of COPI components. COPI components play similar roles in C4/AC4 transport and infections of two other geminiviruses: Beet curly top virus and East African cassava mosaic virus. Our results reveal an unconventional role of COPI components in protein trafficking to chloroplasts during geminivirus infection and suggest a broad-spectrum antiviral strategy in controlling geminivirus infections in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.