Abstract
The photochemical dynamics of aqueous chlorine dioxide (OClO) are investigated using time-resolved resonance Raman spectroscopy. Stokes and anti-Stokes spectra are measured as a function of time following photoexcitation of OClO using degenerate pump and probe wavelengths at 390 nm. The temporal evolution of OClO Stokes intensity is found to be consistent with the reformation of ground-state OClO by subpicosecond geminate recombination of the primary ClO and O photofragments. Anti-Stokes intensity is observed for transitions corresponding to the symmetric stretch of OClO demonstrating that upon geminate recombination, excess vibrational energy is deposited along this coordinate. Dissipation of this energy to the surrounding solvent occurs with a time constant of ∼9 ps. Finally, a delay in the appearance of OClO anti-Stokes intensity relative to geminate recombination is observed demonstrating that the excess vibrational energy available to OClO is initially deposited along the resonance Raman inactive asymmetric stretch coordinate with the exchange of energy between this coordinate and the symmetric stretch occurring with a time-constant of ∼5 ps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.