Abstract

The present study was conducted to demonstrate cytotoxicity, apoptosis and hepatic damage induced by gemcitabine in laboratory mice. Animals were treated with a single dose of gemcitabine (415 mg/kg body wt), equivalent to a human therapeutic dose, and sacrificed after 1, 2 and 3 weeks. A significant decrease in mean body weight and absolute liver weight was registered. The levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased as a result of this induced stress. Various structural changes were observed in the liver tissue of treated mice, as evident in the histological sections. Specifically, gemcitabine exposure was able to induce apoptosis in liver cells, and the incidence of TUNEL positive liver cells was increased compared to the control group. DNA fragmentation appeared on agarose gel and flow cytometry analysis confirmed the induction of apoptosis. These findings in gemcitabine-treated animal tissues suggest that inhibition or disruption of cells’ DNA synthesis may be the mechanism by which this drug induces toxicity in the animal body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.