Abstract

The objective of the present work was to formulate gemcitabine hydrochloride loaded functionalised carbon nanotubes to achieve tumour targeted drug release and thereby reducing gemcitabine hydrochloride toxicity. Multiwalled carbon nanotubes were functionalised using 1,2-distearoylphosphatidyl ethanolamine-methyl polyethylene glycol conjugate 2000. Optimised ratio 1:2 of carbon nanotubes:1,2-distearoylphosphatidyl ethanolamine-methyl polyethylene glycol conjugate 2000 was taken for loading of gemcitabine hydrochloride. The formulation was evaluated for different parameters. The results showed that maximum drug loading efficiency achieved was 41.59% with an average particle size of 188.7 nm and zeta potential of -10-1 mV. Scanning electron microscopy and transmission electron microscopy images confirmed the tubular structure of the formulation. The carbon nanotubes were able to release gemcitabine hydrochloride faster in acidic pH than at neutral pH indicating its potential for tumour targeting. Gemcitabine hydrochloride release from carbon nanotubes was found to follow Korsmeyer-Peppas kinetic model with non-Fickian diffusion pattern. Cytotoxic activity of formulation on A549 cells was found to be higher in comparison to free gemcitabine hydrochloride. Stability studies indicated that lyophilised samples of the formulation were more stable for 3 months under refrigerated condition than at room temperature. Thus carbon nanotubes can be promising carrier for the anticancer drug gemcitabine hydrochloride.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call