Abstract

One molecular‐based approach that increases potency and reduces dose‐limited sequela is the implementation of selective ‘targeted’ delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine‐monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine‐(5′‐phosphoramidate)‐[anti‐IGF‐1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine‐reactive gemcitabine‐(5′‐phosphorylimidazolide) intermediate. Monoclonal anti‐IGF‐1R immunoglobulin was combined with gemcitabine‐(5′‐phosphorylimidazolide) resulting in the synthetic formation of gemcitabine‐(5′‐phosphoramidate)‐[anti‐IGF‐1R]. The gemcitabine molar incorporation index for gemcitabine‐(5′‐phosphoramidate)‐[anti‐IGF‐R1] was 2.67:1. Cytotoxicity Analysis – dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine‐equivalent concentrations of 10−9 M and 10−7 M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine‐(5′‐phosphoramidate)‐[anti‐IGF‐1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine‐reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non‐dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.