Abstract

Upon T cell receptor engagement, both the actin cytoskeleton and substrates of tyrosine phosphorylation are remodeled to create a signaling complex at the interface of the antigen-presenting cell and responding T cell. While T cell signaling has been shown to regulate actin reorganization, the mechanisms by which changes in actin dynamics affect early T cell signaling have not been fully explored. Using gelsolin, an actin-binding protein with capping and severing activities, and latrunculin, an actin-depolymerizing agent, we have further investigated the interplay between actin dynamics and the regulation of T cell signaling. Overexpression of gelsolin altered actin dynamics in Jurkat T cells, and alteration of actin dynamics correlated with dysregulation of tyrosine phosphorylation of raft-associated substrates. This perturbation of tyrosine phosphorylation was correlated with inhibition of activation-dependent signaling pathways regulating Erk-1/2 phosphorylation, NF-AT transcriptional activation and IL-2 production. Modification of actin by the depolymerizing agent latrunculin also altered the tyrosine phosphorylation patterns of proteins associated with lipid rafts, and pre-treatment with latrunculin inhibited anti-CD3 mAb-mediated NF-AT activation. Thus, our data indicate that actin cytoskeletal dynamics modulate the tyrosine phosphorylation of raft-associated proteins and subsequent downstream signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.