Abstract

Using state-of-the-art numerical techniques, we show that, upon lowering the temperature, tetravalent DNA nanostars form a thermodynamically stable, fully bonded equilibrium gel. In contrast to atomic and molecular network formers, in which the disordered liquid is always metastable with respect to some crystalline phase, we find that the DNA nanostar gel has a lower free energy than the diamond crystal structure in a wide range of concentrations. This unconventional behavior, here verified for the first time in a realistic model, arises from the large arm flexibility of the DNA nanostars, a property that can be tuned by design. Our results confirm the thermodynamic stability of the recently experimentally realized DNA hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.