Abstract

Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.