Abstract

Cardiac tissue engineering has emerged as a promising approach for restoring the functionality of damaged cardiac tissues following myocardial infarction. To effectively replicate the native anisotropic structure of cardiac tissues in vitro, this study focused on the fabrication of micropatterned gelatin methacryloyl hydrogels with varying geometric parameters. These substrates were evaluated for their ability to guide induced pluripotent stem cell-derived cardiomyocytes (CMs). The findings demonstrate that the mechanical properties of this hydrogel closely resemble those of native cardiac tissues, and it exhibits high fidelity in micropattern fabrication. Micropatterned hydrogel substrates lead to enhanced organization, maturation, and contraction of CMs. A microgroove with 20-μm-width and 20-μm-spacing was identified as the optimal configuration for maximizing the contact guidance effect, supported by analyses of nuclear orientation and F-actin organization. Furthermore, this specific micropattern design was found to promote CMs' maturation, as evidenced by increased expression of connexin 43 and vinculin, along with extended sarcomere length. It also enhanced CMs' contraction, resulting in larger contractile amplitudes and greater contractile motion anisotropy. In conclusion, these results underscore the significant benefits of optimizing micropatterned gelatin methacryloyl for improving CMs' organization, maturation, and contraction. This valuable insight paves the way for the development of highly organized and functionally mature cardiac tissues in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call