Abstract

ABSTRACT Rice flour dispersions, under suitable conditions of processing, can form a gel. The effect of concentration of solids (10–18%) and time (0–75 min) of processing on textural attributes, and viscoelasticity were investigated along with sensory attributes. The textural attribute determined is gel strength, while viscoelasticity was determined in terms of mechanical spectra like storage modulus (G′), loss modulus (G″), complex viscosity (η*) and loss factor (tan δ) during a frequency sweep varying from 0.01 to 40 Hz at a constant stress of 25 Pa. Microstructural observation indicates the swelling of starch granules in the beginning of heating, while damaged granule and leached‐out materials are visible at the end of the gelling process. Desirability function analysis has been applied to obtain a rice gel with acceptable textural attributes; a solid concentration of 15.2% and a heating time of 75 min can lead to the development of a gel with a satisfaction level of 0.6.PRACTICAL APPLICATIONSRice flour gels in the form of hard‐set gels, porridges and spreads are popular in several parts of the world particularly for feeding of infants and children. The application of the present study lies in understanding the role of major processing variables on the quality attributes and viscoelasticity of a product, characterization of cooked gels and for developing rice flour‐based food gels. The findings may also be extended for the development of other cereal‐based gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.