Abstract

Blends containing ionic liquid (IL) 1-ethyl-3-methyimidazolium tetrafluoroborate [emim][BF4] gelled with Pebax 1657 block copolymers were modified by adding graphene oxide (GO) and fabricated in the form of thin film composite hollow fiber membranes. Their carbon dioxide (CO2) separation performance was evaluated using CO2 and N2 gas permeation and low-pressure adsorption measurements, and the morphology of films was characterized using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Upon small addition of GO into the IL-dominated environment, the interaction between IL and GO facilitated the migration of IL to the surface while suppressing the interaction between IL and Pebax, which was confirmed using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Amplified migration of IL to the surface and better dispersion of GO stacks were further achieved under alkaline conditions. With the enriched IL on the surface, the gas permeation through the films at 0.5 wt % GO and approximately 80 wt % IL loading reached 1000 GPU for CO2 with their CO2/N2 selectivity (up to 44) approaching that of pure IL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.