Abstract

The feasibility to use gellan nanohydrogels (Ge-NHs) as delivery system for the cutaneous administration of piroxicam (PRX) was investigated using gellan conjugated with cholesterol or riboflavin. The in vitro skin penetration studies through human epidermis were performed using a saturated aqueous drug solution, a 50% w/v Transcutol aqueous solution, and a commercially available PRX plaster as controls. Confocal microscopy, ATR-FTIR spectroscopy, circular dichroism, and a dynamometer assisted extrusion assay were performed to clarify the permeation mechanism of Ge-NHs. The skin permeation studies evidenced that Ge-NHs enhance the PRX retention in the epidermis and, at the same time, slow down the permeation process with respect to the controls. NHs can penetrate the stratum corneum, and then gradually disassemble thus diffusing in the viable epidermis reaching the spinosum layer. In conclusion, NHs represent a novel strategy to target poorly permeable compounds in the epidermis, thus improving the management of cutaneous pathologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.