Abstract

Abstract In this paper, we present a uniform formula of Lusztig’s $ \textbf {a}$-functions on classical Weyl groups. Then we obtain an efficient algorithm for the Gelfand–Kirillov dimensions of simple highest weight modules of classical Lie algebras, whose highest weight is not necessarily regular or integral. To deal with type $ D $, we prove an interesting property about domino tableaux associated with Weyl group elements by introducing an invariant, called the hollow tableau. As an application, the associated varieties of all the simple highest weight Harish–Chandra modules are explicitly determined, including the exceptional cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.