Abstract

In this paper, numerical methods for solving multidimensional equations of hyperbolic type by the Gelfand-Levitan method are proposed and implemented. The Gelfand-Levitan method is one of the most widely used in the theory of inverse problems and consists in reducing a nonlinear inverse problem to a one-parameter family of linear Fredholm integral equations of the first and second kind. In the class of generalized functions, the initial-boundary value problem for a multidimensional hyperbolic equation is reduced to the Goursat problem. Discretization and numerical implementation of the direct Goursat problem are obtained to obtain additional information for solving a multidimensional inverse problem of hyperbolic type. For the numerical solution, a sequence of Goursat problems is used for each giveny. A comparative analysis of numerical experiments of the two-dimensional Gelfand-Levitan equation is performed. Numerical experiments are presented in the form of tables and figures for various continuous functions q(x, y).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call