Abstract

Salt soluble meat proteins (SSMP) and commercially available soluble wheat proteins (SWP) were characterised by SDS-polyacrylamide gel electrophoresis, differential scanning calorimetry (DSC) and small and large deformation testing. DSC scans indicated transitions similar to those of native actomyosin for the salt soluble meat extract whereas SWP did not indicate any transitions between 20 and 120 °C. Small deformation tests on SWP indicated a G′/ G″ crossover gelation temperature of 90 °C and weak gels as judged by frequency sweeps. In contrast, SSMP gelled at 40 °C and formed strong gels on heating to 90 °C. However, on autoclaving at 120 °C, 20% SWP in distilled water produced strong elastic gels with little syneresis, compared with the more brittle gels produced with 20% (w/w) SSMP as indicated by large deformation testing. Mixtures of the two proteins in the ratio SSMP/SWP (15:5) gave strong elastic gels similar to the SWP gels. Even the presence of very small amounts of SWP in the mixture, e.g. SSMP/SWP 20:1 trebled the elastic modulus compared with a SSMP gel and reduced syneresis. This was probably due to the close association of SWP with actomyosin strands as viewed by transmission electron microscopy. However, increased levels of SWP in the mixture, for example SSMP/SWP 10:10 ratio, resulted in the separation of the two protein phases as shown by phase contrast microscopy, and consequently led to lower G′ values in the mixed gels. The addition of 20 mM chloride salts showed that potassium reduced the shear modulus, sodium had no effect and calcium enhanced the shear modulus for SWP gels formed at 120 °C. In contrast, SSMP gels were stronger in the presence of potassium, followed by sodium and calcium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call