Abstract
Molecular dynamics simulations have been employed to study the formation of a physical gel by semiflexible polymer chains. The formation of a geometrically connected network of these chains is investigated as a function of temperature and rate of cooling. The stiffness of the molecules is controlled via a potential between beads separated by two bonds. As the temperature is lowered, a percolated homogeneous solution phase separates to form a high-density, non-percolated nematic fluid and a low-density gas phase. On further decreasing the temperature, the chains are dynamically arrested preventing the completion of the vapor-liquid (VL) phase separation. As a result, the chains are stuck in a three-dimensional network of nematic bundles forming a percolated gel. Apart from temperature, the rate of cooling also plays an important role in the formation of the gel. Cooling the system at a faster rate yields gel while slower rates result in complete VL phase separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.