Abstract

Fast, reliable methods for characterizing the micelle-to-gel transition in emerging Pluronic F127/polysaccharide materials are essential for tailoring their applications as in situ gelling delivery systems. This study describes a simple fluorimetric method based on the response to gelation of the molecular probe thioflavin T (ThT). The techniques employed are (second derivative) steady-state and synchronous fluorescence. The capabilities of ThT as gelation reporter are tested for three model systems: Pluronic F127 (P16.6%), Pluronic F127/alginate (P16.6%ALG2%) and Pluronic F127/hyaluronic acid (P16.6%HA0.5%). We demonstrate that the changes in the short and long wavelength emissions of ThT allow accurate determination of the critical gelation temperatures in the investigated systems. The spectroscopic data providing information at molecular level are complemented with differential scanning microcalorimetric results revealing additional macroscopic insight into the micellization process. The gelation study is preceded by a solvatochromic analysis of ThT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.