Abstract

Gelation kinetics of native and acetylated konjac glucomannan (KGM) samples in the presence of alkali (sodium carbonate) was studied by dynamic viscoelastic measurements. Molecular weight and other molecular parameters of KGM were determined by static light scattering and viscosity measurements. It was found that KGM molecules were degraded during acetylation treatment, but the molecular weights of acetylated samples were almost independent of the degree of acetylation (DA) and were about a half of that of a native sample. At a fixed alkaline concentration, increasing concentration of KGM or temperature shortened the gelation time, but increasing DA delayed it. The deacetylation reaction and subsequent aggregation process of acetylated samples needed longer time than that of native sample, and acetylated samples formed finally more elastic gels. It implied that the presence of acetyl groups exerts a strong influence on gelation behavior of KGM. It was suggested that the gelation rate of acetylated KGM and native KGM, which depends on the alkaline concentration and temperature, is an important factor that determines the elastic modulus of gels. This was supported by the experimental finding that the saturated elastic modulus tends to the same value when the ratio of alkali concentration to acetylated groups was kept constant. In slower gelation processes, junction zones are more homogeneously distributed and more numerous, leading to the more elastic gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.