Abstract

The development of hydrogel films for biomedical applications is interesting due to their characteristics. Hydrogel films based on gelatin and poly(vinyl alcohol) (PVA) are developed and characterized using a rotatable central composite design. The optimized hydrogel film is obtained by the function desirability of the Statistica® software and is also characterized by swelling kinetics, oxygen permeability, adhesiveness, TGA, DSC, and XRD. The results of the experimental design show that gelatin and PVA concentrations have a significant influence on the response variables, and the exposure doses to UV light show no significant effect. The optimized hydrogel film is elastic, presents good mechanical resistance and swelling capacity in water and exudate solution, is permeable to oxygen, and is capable of adjusting itself and maintains contact close to the skin. In this way, considering all the properties evaluated, the optimized film has characteristics suitable for biomedical applications as wound dressings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.