Abstract

Chronic neural interfaces that are both structurally and functionally stable inside the brain over years or decades hold great promise to become an invaluable clinical tool in the near future. A key flaw in the current electrode interfaces is that their recording capabilities deteriorate over time, possibly due to the lack of flexibility, which causes movements in relation to the neural tissue that result in small inflammations and loss of electrode function. We have developed a new neural probe using the stabilizing property of gelatine that allows the implantation of ultra-thin and flexible electrodes into the central nervous system. The microglial and astrocytic reactions evoked by implanted gelatine needles, as well as the wire bundles in combination with gelatine, were investigated using immunohistochemistry and fluorescence microscopy up to 12 weeks after implantation. The results indicate that pure gelatine needles were stiff enough to penetrate the brain tissue on their own, and evoked a significantly smaller chronic scar than stab wounds. Moreover, gelatine embedding appeared to reduce the acute reactions caused by the implants and we found no adverse effects of gelatine or gelatine-embedded electrodes. Successful electrophysiological recordings were made from very thin electrodes implanted in this fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.