Abstract
Current work focuses on the synthesis and characterization of novel pH-sensitive biocompatible gelatin/carboxymethyl cellulose based hydrogels by free radical polymerization technique cross-linked with glutaraldehyde. Effect of pH, polymer ratio and variable crosslinking concentrations on dynamic swelling, equilibrium swelling, porosity, sol-gel analysis and in vitro release pattern was investigated. Hydrogel structure was confirmed by FTIR, XRD, and DSC. Moreover scanning electron microscopy confirmed the porous structure of gel network. Various structure property relationships like average molecular weight between crosslinks (Mc), solvent interaction parameters, volume fraction of polymer (V2,s) and diffusion coefficient (D) that affect the release behaviour were determined. Results showed that maximum swelling and highest release of drug occurred at pH 1.2. Porosity and gel fraction increased by increasing polymer load. The invivo absorption and pharmacokinetics evaluation in rabbit’s models revealed the controlled nature of hydrogels. MTT assay confirmed the biocompatible nature of blank hydrogels against Vero cell lines and cytotoxic potential against HeLa cell lines. The preliminary safety evaluation and oral tolerability revealed that the hydrogel solution is safe up to 4000 mg/kg body weight without causing any hematological or histopathological changes in rabbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.