Abstract

In this study, a self-healing, adhesive, and superabsorbent film made of gelatin, poly(acrylamide), and boric acid (GelAA) was successfully synthesized using a free radical reaction mechanism. The optimized film showed a remarkable 2865 ± 42% water absorptivity and also exhibited excellent self-healing behavior. The GelAA films were further loaded with silver nanoclusters (AgNCs) and ursodeoxycholic acid (UDC) (loading efficiency = 10%) to develop UDC/Ag/GelAA films. The loading of AgNCs in UDC/Ag/GelAA films helped in exhibiting 99.99 ± 0.01% antibacterial activity against both Gram-positive and Gram-negative bacteria, making them very effective against bacterial infections. Additionally, UDC/Ag/GelAA films had 77.19 ± 0.52% porosity and showed 90% of UDC release in 30 h, which helps in improving the cell proliferation. Our research provides an easy but highly effective process for synthesizing a hydrogel film, which is an intriguing choice for wound healing applications without the use of antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call