Abstract

Recently, a significantly greater clinical benefit has been reported with a combination of glucosamine sulfate and nonsteroidal anti-inflammatory drugs (NSAIDs) compared to either treatment alone for the growing osteoarthritis (OA) disease. So, this study introduces hydrogels using O-carboxymethyl chitosan (O-CMC, structurally akin glucosamine glycan), and Gelatin type A (GA) in a 1:2 ratio with β-glycerophosphate (βGPh) at varying percentages (5 %, 12.5 %, and 15 %). We show that hydrogel properties, adaptable for drug delivery or tissue engineering, can be fine-tuned based on OCMC:βGPh ratio. CMC/GA/βGPh-12.5 exhibited a swelling rate of 189 %, compressive stress of 164 kPa, and compressive modulus of 3.4 kPa. The self-healing hydrogel also exhibited excellent injectability through a 21-gauge needle, requiring only 5 N of force. Ibuprofen and Naproxen release from CMC/GA/βGPh-12.5 and CMC/GA/βGPh-15 of designed dimensions (bi-layer structures of different diameter and height) were measured, and drug release kinetics were estimated using mathematical equations (MATLAB and polyfit program).CMC/GA/βGPh-12.5 demonstrated significant antibacterial effects against E. coli and S. aureus, a high cell survival rate of 89 % against L929 fibroblasts, and strong cell adhesion, all indicating biocompatibility.These findings underscore potential of these hydrogels as promising candidates for treating inflammatory diseases such as osteoarthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call