Abstract
Scaffold-based cell delivery can improve therapeutic effects of transplanted cells in cell therapy. Biomaterial scaffolds serveas niche for cell growth and proliferation which improves cell survival and overall function post cell delivery. In this study, gelatin methacryloyl based injectable scaffolds made using poly(ethylene)glycol as a sacrificial polymer and cryogelation as a technique, are demonstrated to have tunable degradability and porosity that is required for cell and drug delivery applications. The pore size (10-142µm) of these gels makes them suitable for loading different cell types as per the application. In vitro studies using mammalian cells confirm that these cryogels are cytocompatible. These cell-laden scaffolds are injectable and have a cell retention ability of up to 90% after injection. Rheology is done to evaluate stiffness and shape recovery property, and it is found that these gels can maintain their original shape even after applying 7 cycles of strain from 0.1% to 20%. Furthermore, their degradability can be modulated between 6 and 10 days by changing the overall polymer composition. Thus, injectability and degradability of these cryogels can circumvent invasive surgical procedures, thereby making them useful for a variety of applications including delivery of cells and bioactive factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.