Abstract

Thermoreversible hydrogels for tissue engineering (TE) purposes have gained increased attention in recent years as they can be combined with cells and drugs and directly injected into the body. Following the fate of transplanted cells in situ is essential in characterizing their distribution and survival, as well as the expression of specific markers or cell–matrix interactions. Existing histological embedding methods, such as paraffin wax embedding, can mechanically damage some biomaterials during processing. In this study, we describe a broadly applicable preparation protocol that allows the handling of delicate, thermoreversible scaffolds for histological sectioning. The gelatin solution permits the embedding of samples at 37 °C, which suits the solid phase of most TE scaffolds. A thermoreversible scaffold of polycaprolactone microparticles, combined with poly(polyethylene glycol methacrylate ethyl ether) and containing human adipose-derived stem cells, was prepared for histology by an initial gelatin embedding step in addition to the standard cryosectioning and paraffin processing protocols. Sections were evaluated by hematoxylin eosin staining and immunostaining for human vimentin. The gelatin embedding retained the scaffold particles and permitted the complete transfer of the construct. After rapid cooling, the solid gelatin blocks could be cryosectioned and paraffin infiltrated. In contrast to direct cryosectioning or paraffin infiltration, the extended protocol preserved the scaffold structure as well as the relevant cell epitopes, which subsequently allowed for immunostaining of human cells within the material. The gelatin embedding method proposed is a generalizable alternative to standard preparations for histological examination of a variety of delicate samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.