Abstract

Gelatin and DNA are abundant natural products with very good biodegradation properties and can be used to obtain acetic acid or LiClO<sub>4</sub>-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents the results of the ionic conductivity measurements of GPEs membranes based on crosslinked and plasticized gelatin and on plasticized DNA as well as on inserted/extracted charge density of electrochemical devices (ECDs) obtained with these samples. The membranes were analyzed by impedance spectroscopy, UV-Vis spectroscopy and the ECDs by charge density measurements, respectively. At room temperature the measured ionic conductivity of the membranes is in the range of 10<sup>-4</sup>-10<sup>-5</sup> S/cm. It obeys predominantly an Arrhenius relationship in function of temperature. The ECD with red gelatin changed the color from red to deep red and the ECD with DNA-based electrolyte changes from transparent to blue. The inserted charge density values of these ECDs were of -3.0 mC/cm<sup>2</sup> for the device with red gelatin and -6.6 mC/cm<sup>2</sup> for the ECD with DNA-based electrolyte. The reverse potential application promoted a charge extraction and, as consequence, bleaching of the devices. Good ionic conductivity results combined with transparency and good adhesion to the electrodes and promising preliminary results of small ECDs have shown that gelatin and DNA-based GPEs are very promising materials to be used as gel polymer electrolytes in electrochromic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.