Abstract

Hyaluronic acid is a polysaccharide with viscoelastic and mechanical properties that are crucial for the normal functioning of osteoarticular junctions. It is demonstrated that introduction of a hexadecyl side chain into HA yields an injectable polysaccharide capable of forming physical hydrogels, which are stable at very low polymer concentrations, whereas native hyaluronic acid forms viscous solutions at concentrations that are ten times higher. Characterization of this system showed that the driving force for its gel-like behavior is the occurrence of hydrophobic interactions involving aliphatic side chains, despite the low degree of substitution, as confirmed by molecular dynamics simulations of HYADD4 and HA hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call