Abstract
A new, so called odd Gel’fand–Zetlin (GZ) basis is introduced for the irreducible covariant tensor representations of the Lie superalgebra . The related GZ patterns are based upon the decomposition according to a particular chain of subalgebras of . This chain contains only genuine Lie superalgebras of type with k and l nonzero (apart from the final element of the chain which is ). Explicit expressions for a set of generators of the algebra on this GZ basis are determined. The results are extended to an explicit construction of a class of irreducible highest weight modules of the general linear Lie superalgebra .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.