Abstract

Composite gel electrolytes containing several kinds of particles used as the quasi-solid-state electrolytes in dye-sensitized solar cells (DSSCs) were reported. Mesoporous particles (MCM-41) with unique structures composed of ordered nanochannels were served as a new kind of gelator for quasi-solid-state electrolytes. MCM-41, hydrophobic fumed silica Aerosil R972 and TiO 2 nanopatricles P25 were dispersed into gel electrolytes respectively. The solar energy-to-electricity conversion efficiency of these cells is 4.65%, 6.85% and 5.05% respectively under 30 mW·cm −2 illumination. The preparation methods and the particles sizes exert an influence on the performance of corresponding solar cells. Owing to unique pore structures and high specific BET surface area, mesoporous silica MCM-41 was expected to have the potential to afford conducting nanochannels for redox couple diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.