Abstract
Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high-power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar-agar, extracted from red algae, is modified to increase gel viscosity up to 17-fold. This occurs due to alkaline treatment and an increase in the concentration of the agar-agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg-1 ) and power density (230 W kg-1 ). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g-1 , showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale-up. To this end, this work provides eco-friendly electrolytes for the next generation of flexible energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.