Abstract
The performance of single and multielement Geiger-mode avalanche photodiode (GM-APD) devices are investigated as a function of the detector's reset or dead time. The theoretical results, developed herein, capture the effects of both quantum fluctuations and speckle noise and are shown to agree with Monte Carlo simulation measurements. First, a theory for the mean response or count rate to an arbitrary input flux is developed. The probability that the GM-APD is armed is shown to be the ratio of this mean response to the input flux. This arm probability, P(A), is then utilized to derive the signal photon detection efficiency (SPDE), which is the fraction of signal photons that are detected. The SPDE is a function of the input flux, the arm probability, and the dead time. When the dead time is zero, GM-APDs behave linearly, P(A) is unity, and the SPDE theory is simplified to the detector's effective quantum efficiency. When the dead time is long compared to the acquisition gate time, the theory converges to previously published "infinite" dead-time theories. The SPDE theory is then applied to develop other key ladar performance metrics, e.g., signal-to-noise ratio and detection statistics. The GM-APD detection statistics are shown to converge to that of a linear photon counting device when the combined signal and noise flux is much less than the reset rate. For higher flux levels, the SPDE degrades, due to a decreased arm probability, and the detection probability degrades relative to that of a linear device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.