Abstract

NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

Highlights

  • NCoR and SMRT are paralogous vertebrate proteins that were first identified as transcriptional corepressors interacting with unliganded thyroid and retinoid receptors [1,2]

  • Chromatin remodeling depends on the formation of a stoichiometric complex between SMRT/NCoR and HDAC3 that is mediated by two SANT

  • While the SANT2 domain in NCoR/SMRT possesses all of the typical features of a general SANT domain, the presence and structure of the SANT1 domain is unique to NCoR/SMRT and its orthologues [10]

Read more

Summary

Introduction

NCoR and SMRT are paralogous vertebrate proteins that were first identified as transcriptional corepressors interacting with unliganded thyroid and retinoid receptors [1,2]. Both NCoR (a.k.a. NCoR1, NCOR1) and SMRT (a.k.a. NCoR2, NCOR2) knockouts in mice are embryonic lethal suggesting that their regulatory roles are indispensable for normal development [3]. MYB) domains located at the N-terminus of NCoR/ SMRT Such domains are present in many nuclear receptor corepressors and related proteins and consist of three alpha-helices folded around a core of three hydrophobic amino acids, which determines its characteristic spatial structure [5,6,7].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.